Evaluation of Ecosystem Response to Thin Layer Placement on a Jekyll Island, Georgia Salt Marsh

> Christine M. Hladik, Risa A. Cohen James Morris

Thin Layer Placement (TLP)

- Marsh Ecosystem Services
 - Wastewater treatment
 - Blue carbon storage
 - Shoreline protection
 - Habitat
- Increased Flooding
 - Sea level rise (SLR)
 - Land subsidence
- TLP restores elevation by adding a layer of sediment
 - Increase nutrients, aeration
 - Increase productivity

Source: <u>NERRA</u>, Raposa et al. 2023. Original graphic by Caravan Lab and LandSea Science 2

Jekyll Island Creek, GA

- Pilot project to explore beneficial use in salt marshes
 Dredged material placement
- Jekyll Creek navigation hazard
- Partners
 - US Army Corps of Engineers
 - GA DNR Coastal Resources Div.
 - Jekyll Island Authority
 - The Nature Conservancy
 - NOAA, FWS, EPA

Materials provided by Jan MacKinnon (GA DNR CRD) and Clay McCoy (USACE)

Thin Layer Placement: Monitoring Objectives

Can TLP be used to support coastal resilience and maintenance of ecosystem services in Georgia tidal marshes?

- Monitor physical parameters of the application and control sites pre- and post-TLP application
- Monitor biological parameters of the impacted and control sites pre- and post-TLP application

TLP Monitoring Parameters

Physical Parameters

- Elevation
- Tide range
- Suspended sediment/turbidity
- Accretion
- Soil OM, bulk density

Biological Parameters

- Plant height, density
- Invertebrate density
- Microphytobenthos Chl a
- Above/belowground biomass

Remote Sensing

- Habitat: Aerial, UAV imagery
- Elevation: LIDAR

TLP Monitoring Dates

- Pre-TLP application: November 15, 2018
- Post-TLP application
 - TLP application (April 22, 2019)
 - Six-months post (October 5, 2019)
 - 12-months post (COVID CANCELLED)
 - 18-months post (COVID CANCELLED)
 - 24-months post (April 2021)
 - 30-months post (September/October 2021)
 - 60-months post (April 2024)
 - 72-months post (March/April 2025)

TLP Site Construction

- 5-acre TLP site
 - Spartina alterniflora
- April 2019 piped
 - 5,000 CY (3823 m³) of hydraulic dredge
 - MHW ~ 0.84 0.91 m
 - 15 25 cm of dredge
- Pluff mud Fine-grained silt and clay, with low sand content
- Coconut coir containment logs

Photos by Clay McCoy, USACE Jacksonville District

Jekyll Island Study Site and Plot Layout

- Two Study Sites (5-acres)
 - Control Site
 - TLP Placement Site
- Plot Layout
 - 6 plots/site (1 x 1 m)
 - 3 elevation transects/site

Pre-TLP: March 24, 2019

April 14, 2019 – Construction

April 26, 2019 – Post-TLP

March 22, 2021 – 12-mo Post

March 15, 2022 – 24-mo Post

March 14, 2023 – 48-mo Post

April 5, 2024 – 60-mo Post

Physical Parameters: Marsh Elevation

Study site locations of the control site (blue) and TLP (red), monitoring plots (yellow squares; C = Control, T = TLP), and RTK survey transects (lines).

- Trimble RTK GPS
 - Surveyed plots
 - Surveyed every 15 m along transects
 - All sampling periods

Physical Parameters: Marsh Elevation

Pre-TLP

 No difference between sites

60-Months Post-TLP

- TLP increased elevation
- Site differences
- RM ANOVA, F_{1,9} = 14.88, *p*= 0.004

*Control plot was lost to creek head erosion

Physical Parameters: Tide Range

- Hobo loggers
 - Autonomous pressure transducers
 - Deployed post-TLP
 - Surveyed with RTK
- MSL relative to NAVD 88 and rate of SLR
 - Correlate with NOAA tide gages at Ft. Pulaski, GA and Fernandina Beach, FL

Source: NOAA National Ocean Service

Physical Parameters: Tide Range

- Hobo data match Fernandina Beach
- For the last 20 years:
 - MSL = 0.06 m NAVD
 - MHW = 1.07 m NAVD
 - SLR = 2.23 ±0.17 mm/yr
- Mean elevation pre-TLP of 0.7m and 0.85m NAVD 60-mo post-TLP
- Optimum elevation mid-way between the upper and lower limits
 - TLP site is near optimum

*NAVD 88 (~ 0.80 m below MHW and ~ 0.20 m above MSL)

Hobo water level data for Jekyll (blue) correspond with Fernandina Beach (Station ID: 8720030) (orange) and Ft. Pulaski (grey) tide stations. All elevations are in m relative to NAVD 88.

Physical Parameters: Soil Cores

- Soil Cores
 - 12 cores (6 per site)
 - 30 cm long
 - 4-in pipes, 5-cm sections
 - Pre-TLP, annually
- Sediment bulk density (BD)
 - Volumes of dried samples
- Organic matter (OM) concentration and below-ground biomass
 - Loss on ignition (LOI): Dry, weigh, combust, reweigh

Physical Parameters: Soil Cores

Control and TLP site soil core data pre-TLP application (November 2018, left) and 60-months post-TLP (April 2024, right) for loss on ignition (%) (LOI, top) and bulk density (g/cm3) (BD, bottom).

• Pre-TLP

- LOI significant difference (*p*=0.01)
- BD not different

60-Months Post-TLP

- TLP significantly lower LOI (*p*<0.0001)
- LOI and BD varied over depth with significant treatment effect (p<0.0001)
 - Lower LOI and higher BD of the added thin layer
- Belowground organic matter (OM) has not recovered at TLP site
 - Persistence of dead, macro-organic matter

Biological Parameters: Plant Characteristics

- 12 Plots (6 per site)
 0.25 m x 0.25 m plot
 - All sampling periods
- Plants
 - Spartina alterniflora
 - Tall (> 1 m)
 - Medium (0.5 1 m)
 - Short (< 0.5 m)
 - Percent cover
 - Stem height
 - Stem density

Examples of Control and TLP plant plots. Plots are 1 x 1 m. All plant data was collected within the smaller 0.25 x 0.25 m quadrat.

Plot recovery at the TLP site pre-TLP, 6-months post-TLP, 30-months post-TLP, and 60-months post-TLP.

Biological Parameters: Plant Height and Stem Count

• **Pre-TLP**: No difference between sites

60-Months Post-TLP

- Height: Treatment*Time interaction
 - RM ANOVA, F_{3.8} = 17.67, *p* = 0.0007
 - TLP plots shorter until 30-mo post
 - Some plots had tall stems, some none
- Stem Density: Treatment*Time interaction
 - RM ANOVA, F_{3,8} = 8.57, p = 0.007
 - Control site plots were denser
 - TLP stem densities increased slowly with time

*Control plot was lost to creek head erosion

24

Biological Parameters: Aboveground Biomass

- 12 Plots (6 per site)
 - 0.25 m x 0.25 m plot
 - Nondestructive (all sampling periods)
 - Destructive (pre-TLP, 24 months post-TLP)
- Nondestructive
 - Stem heights to dry weight using allometry
- Destructive
 - Clipped all stems
 - Dried and weighed
 - Validate nondestructive

Biological Parameters: Aboveground Biomass

- Pre-TLP
 - No site differences
- 6-months Post
 - Zero live biomass at TLP
- 30-months Post
 - Patchy TLP recovery
 - SD was 50% of mean
 - Plots with zero biomass and plots with high biomass
- 60-months Post
 - TLP significantly greater than control (p = 0.01)
 - Patchy areas of higher biomass

Thin Layer Placement: Summary

- Physical Parameters
 ★• Elevation
 - Tidal range
 - ★• Turbidity
 - ★• Soil cores (bulk density, OM)
- Biological Parameters
 - Plant characteristics
 - Above-ground biomass
 - ★• Invertebrates
 - ★ Microphytobenthos

Thin Layer Placement: Summary

- Monitored TLP and Control plots for 60-mo
- TLP site still recovering
 - Pattern is not uniform
 - Timing of recovery differs for parameters
 - Duration longer than anticipated
- Recovery patterns suggest recovery due to:
 - Wind event uncovering vegetation
 - Vegetive growth inward

Thin Layer Placement: Summary

- Recommendations:
 - TLP method
 - Timing of sediment delivery
 - Apply to smaller study area
 - Reduce application depth
 - Increase proportion of sand in sediment
 - Coir containment logs prevented tidal flooding
 - Monitoring
 - Use of boardwalks
 - Sediment elevation table (SET)

Photos by Clay McCoy, USACE Jacksonville District

Next Steps

- Continued monitoring using remote sensing data
 - Image analysis
 - UAV, LIDAR
- Back in the field!
 - March/April 2025

Acknowledgments

Funding

Cooperative Ecosystem Studies Units (CESU) – Piedmont-South Atlantic Coast Award W912HZ-18-2-0014 and W81EWF-23-SOI-0012

Collaborators

Karen Sundberg, Karim Alizad

Clay McCoy and Laurel Reichold, USACE, GA DNR, NWFS, USFWS, Nature Conservancy, Jekyll Island Authority

Francis Lapolla

Students

S. Alvey, C. Telfort, A. Tucker, A. Gordon G. Costomiris, D. Wilson, S. Kilian, Z. Czoer, E. Obeng, A. Omoniyi

https://www.senserasystems.co m/public/embed/M88060758320

Thanks!

Spartina alterniflora Vertical Distribution

Relationship of TLP and Control site elevations pre- and post-TLP treatment to tidal datums and *S. alterniflora's* vertical range.

- S. alterniflora within tidal zone
 - 30 cm above MHW
 - 10 cm below MSL
- Growth limits
 - Lower: -0.16 m NAVD
 - Upper: 1.37 m NAVD
- Optimum elevation mid-way between the upper and lower limits
 - TLP and control sites were close to optimum

Physical Parameters: Turbidity

- Suspended Sediment Concentration
 - Turbidity
 - LaMotte 2020 turbidity meter
 - All sampling periods
 - Collected water samples in creek/river
 - Near Control and TLP sites
 - 3 samples each

Physical Parameters: Turbidity

- Pre-TLP: No difference
 - t-test, t₄=8.52=0.84, *p*=0.45
- 60-months Post-TLP:
 Treatment*Time interaction
 - RM ANOVA, F_{1,4} = 44.27, p = 0.002
- Response not predictable
 - At times significantly higher
 - At times no significant difference

Mean water column turbidity adjacent to the TLP and control sites pre-TLP application, 6-, 24-, 30-, 60-months post-application. Error bars are \pm one standard error of the mean.

Biological Parameters: Microphytobenthos

- 6 plots per site
- All sampling dates
- Collected three sediment cores (1 cm deep) per plot
- Extracted green pigments
- Measured chlorophyll a concentration using fluorometry

Biological Parameters: Microphytobenthos

- **Pre-TLP**: No difference between sites
- 60-Months Post-TLP
 - TLP significantly lower
 - Differences over time
 RM ANOVA, F_{3,8} = 23.34, *p* = 0.0003
 - Trend toward treatment effect
 - RM ANOVA, $F_{1,10} = 4.02$, p = 0.07

Biological Parameters: Aboveground Biomass

Live and dead biomass of control, pre-TLP treatment, and post-TLP treatment Jekyll Island sites.

• Pre-TLP

- No site differences
- 6-months Post
 - Zero live biomass at TLP
- 30-months Post
 - Patchy TLP recovery
 - Increase in live biomass
 - SD was 50% of mean
 - Plots with zero biomass and plots with high biomass
- 60-months Post
 - TLP significantly greater than control (p = 0.01)
 - Patchy areas of higher biomass

Biological Parameters: Invertebrates and Redox

- 6 plots per site
 - 0.25 m x 0.25 m plot
 - All sampling periods
- Invertebrates
 - Snails
 - Littoraria irrorata
 - Melampus bidentatus
 - Crab holes
 - Uca spp.
 - Mussels (1 x 1 m)
 - Geukensia demissa
- Soil redox

Biological Parameters: Crab Holes & Snail Count

- **Pre-TLP**: No difference between sites
- 60-Months Post-TLP
 - **Crabs:** Treatment*Time interaction
 - RM ANOVA, F_{3,8} = 8.03, p = 0.02
 - Snails: Trend toward treatment effect on snails
 - RM ANOVA, F_{1,10} = 3.17, p = 0.10
 - Mollusks: Not enough data to analyze statistically

Biological Parameters: Redox

- **Pre-TLP**: No difference between sites
- 60-Months Post-TLP: Treatment*time interaction
 - RM ANOVA, F_{2,35} = 19.36, p <0.0001
- Mirrors plant response

