Georgia Coastal Management Program

GIS Updates

Dan Quinn
RTK GNSS Receiver Evaluation

Evaluating replacement options for our R8s RTK

- Trimble R12i
 - 0.8 cm H/1.5 cm V Precision
 - 672 Channels
 - xFill
 - Tilt Compensation

- Trimble DA2 with Catalyst
 - 1 cm H/2 cm V Precision
 - Managed with Android or iOS Device
 - Subscription based service
 - Credits include VRS Now or RTX corrections
 - Hardware is significantly cheaper

Image Credit: Trimble.com
Maintaining Geospatial Data Access with GA Tech

Georgia Coastal and Marine Planner (GCAMP)

Welcome to GCAMP!
The Georgia Coastal and Marine Planner (GCAMP) is quite possibly the most amazing geospatial gateway to Georgia-specific maps, data, and resources relevant to coastal and marine planning EVER. Click below or on the above links to get started. Data download now available through the Data Catalog. Please enjoy.

https://geospatial.gatech.edu/GCAMP/

Layer Types: Human Use, Jurisdictions and Boundaries, Natural Resources and Habitat, Fisheries, and Physical

Georgia Wetlands Restoration Access Portal (G-WRAP)

Welcome to G-WRAP!
The Georgia Wetlands Restoration Access Portal (G-WRAP) is pretty much everyone’s favorite gateway to interactive wetlands maps, data, and resources for coastal Georgia. Click below or on the above links to get started. Please enjoy.

https://geospatial.gatech.edu/G-WRAP/

Layers Types: Focused on wetland areas including Boundaries, Habitat and Natural Resource classifications, and Physical

Work with Tony Giarrusso (Georgia Tech) to maintain and build publicly available geospatial data for coastal Georgia.
NOAA funded grants require that data must be made:

- Visible
- Accessible
- Machine-readable
- Using standardized metadata format
- Independently understandable
- Free of charge (or minimal cost)
- Completed in a timely manner

We will work with you to ensure data sharing requirements are met

To meet requirements, a typical plan should include:

1) Descriptions of the types of environmental data and information expected to be created
2) The tentative date by which data will be shared
3) The standards to be used for data/metadata format and content
4) Methods for providing data access
5) Approximate total volume of data to be collected
6) Prior experience in making such data accessible

Other possible plan inclusions:
- Policies addressing data stewardship and preservation
- Type of data collection method
Coastal Hazards

Coastal Hazards

Coastal Hazards is a growing priority area for the CCMP. There has been a significant shift in focus over the last five years. There has been a high demand from educators, researchers, local, state and federal governments for more data, information, and planning.

Green Growth

Green Growth practices are one way to address development pressure on our natural resources. Green growth can be defined in many ways, but the overall goal is to responsibly support the future growth of coastal Georgia in a sustainable way by balancing natural resource protection and growth without compromising the health of our coastal ecosystems for future generations to enjoy.

Nature-based Solutions

Nature-based Solutions

Coastal Wetlands

Coastal Wetlands

The coast of Georgia comprises a vast array of wetlands ranging from freshwater non-tidal and tidal wetlands to estuarine wetlands, or salt marshes. With approximately 100 hours miles of coastline, Georgia boasts approximately 568,000 acres of estuarine tidal marshes.

These marshes are ecologically significant habitats for aquatic organisms, including fish, shellfish, waterfowl, and other wildlife species. In addition to serving as habitat, salt marshes also function as feeding grounds, buffers against coastal storm surge, and natural filtration to improve water quality by transforming nutrients and removing sediment.
A New Living Shorelines StoryMap

Updates Will Include:
• Benefits of living shorelines
• How they are created
• Recent projects

Riverine and tidal creek erosion is a natural process but can, in certain instances, be exacerbated by anthropogenic influences. Historically, property owners have constructed rock revetments or bulkheads to combat tidal creek erosion. Beginning in 2006, a new technique referred to as Living Shorelines began to be developed in coastal Georgia.

Novel engineering approaches providing alternatives to conventional armored shorelines that are constructed to protect uplands lying adjacent to estuarine waters from erosion. Living Shorelines use bioengineering in combination with native vegetation plantings to stabilize or enhance wetland habitats. The primary goal of a Living Shoreline is to avoid engineering designs that hinder or disrupt the natural connections between aquatic environments and adjacent uplands. Secondary goals include the preservation of tidal exchange, sediment conservation, natural plant communities and necessary shoreline dynamics associated with sea level rise.