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The movement of water through estuaries is an 
important factor in determining the distribution of 
dissolved substances such as pollutants or nutrients and 
the consequent exposure of estuarine habitats to those 
substances.  The ability to estimate the potential effects 
of introduced substances on critical habitat may be 
aided by modeling studies of water movement and 
mixing within estuaries.  For example, fate and 
transport modeling has been recommended as an aid in 
estimating exposure of aquatic communities to 
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 SqueezeBox modeling 
 2002), which is based 
cPherson (1991).  This 

oothed 
a and upstream flow of 

seawater vs. distance along the longitudinal axis of the 
estuary, so that box boundaries may be drawn at any 
point along the estuary.  The cross-sectional area 
equation is the same for all flow rates, but the upstream 
flow of seawater increases as freshwater inflow 
increases, as expected for estuarine circulation.  For a 
given constant freshwater inflow rate specified by the 
user, box boundaries are chosen so that the ratio of box 
throughflow during a time step to box volume is within 
an optimum range for numerical stability (0.2-0.5).  In 
addition to calculating upstream flow of seawater, the 
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atial resolutions of 1.4-11.3 km (<4.7 km within the 
ixing zone).  All models were run until 99% tracer 
moval was achieved.  When tracer is introduced as a 
int source, the time for removal of a given percentage 
 material is called the pulse residence time (PRT), 
hereas removal of material introduced throughout the 
tuary (e.g. as a non-point source) is called an 
tuarine residence time (ERT) (Miller and McPherson, 
91).  In this paper, all estimates of PRT and ERT 
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the estuary and so not all of it must traverse the entire 
estuary before it exits.   

Tracer released as a point source anywhere in the 
estuary or as a non-point source over the whole estuary 
moved toward the region located 4-6 km from the 
mouth, regardless of flow rate.  When tracer was 
introduced at head of tide (54 km), the peak moved 
rapidly to the head of the mixing zone at 24 km (from 
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Figure 1.  Tracer distribution for 4 flow cases (low, median, intermediate, and high) following introduction of
point source inputs at 6 locations throughout the estuary.  See Table 1 for corresponding flow rates.
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Another way to evaluate pollutant exposure is to 
consider the amount of time that a location experiences 
a pollutant concentration above a minimum level.  As 
an example, Fig. 4 shows the number of days that 
estuary locations experienced a tracer concentration 
above an arbitrary minimum of 1% when a tracer 
concentration of 1 was introduced at head of tide.  
Although the peak spends the most time at 4-6 km (Fig 
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Figure 3.  Tracer distribution for 4 flow cases (low, median, intermediate, and high) following introduction of a
non-point source input throughout the estuary.  See Table 1 for corresponding flow rates. 
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Much of this paper has focused on the movement 
of tracer toward a potential convergence zone at 4-6 
km.  Although information of this type is important for 
locating the region in the estuary that experiences the 
maximum duration of exposure to a dissolved 
substance such as a pollutant, it is not the only 
consideration for evaluating the potential impact of the 
distribution of material in the estuary.  If the primary 
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