Enhancing Ecosystem Services with Green Infrastructure

R. Alfred Vick, PLA, LEED Fellow Georgia Power Professor in Environmental Ethics

Green Infrastructure

...a strategically planned and managed network of natural lands, working landscapes and other open spaces that conserve ecosystem values and functions and the benefits derived by human populations. Benedict and McMahon, 2006

Green infrastructure uses vegetation, soils, and natural processes to manage water and create healthier urban environments. EPA, 2013

Concept

Low Impact Development

LID

Low Impact Development

LID

 1993 Prince George's County, MD publishes the "Bioretention Manual" "The primary goal of Low Impact Development methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, and detain runoff."

1998 The Low Impact Development Center is established

- Today
- LID is a core concept of stormwater management ordinances and regulations throughout the country
- Management of non-point source pollutants is federally mandated
- Success stories throughout the country are ubiquitous with projects that are environmentally beneficial, attractive and cost-effective (see: <u>http://water.epa.gov/polwaste/green/index.cfm#fact</u>

Ecological Restoration

SER

Today

- Restoration Ecology is a recognized scientific discipline, with multiple peer-reviewed journals specific to the field.
- The scope of ecological restoration has exploded from humble beginnings in Wisconsin prairies to almost any ecosystem of cultural significance.
- Concepts of ecological trajectory and Adaptive Ecosystem Management (AEM) are influential in the design of many constructed landscapes and buildings

Smart Growth

CNU

Smart Growth

- Today
- The Atlanta Beltline is being built!
- The High Line is one of the most widely acclaimed built works of the last two decades.
- These projects are just two examples of the ongoing attention to reclaiming communities for people, in addition to automobiles.
- GeoDesign emerges to leverage geospatial data for community well-being

Green Building

- Today
- 2 billion square feet of commercial space has been LEED Certified
- 20% of the commercial construction in the US is pursuing LEED Certification (estimated \$554 billion economic impact)
- LEED Certification mandated for hundreds of jurisdictions around the world
- Market transformation is evident in products, materials, practices and performance.

Some of the influential outcomes

Green Building

- Performance metrics
- Market transformation

Interstate Green Stormwater Infrastructure Pilot Project

with American Rivers, GDOT, and Central Atlanta Progress

Synopsis: Interchange

Interchange Catchments	Proposed GSI Practice	Contributing Drainage Area (Ac)	Area Feasible for GSI (Ac)	Minimum GSI Footprint (Ac/Sqft)	Ratio of Minimum Footprint to Available	Runoff Generated in a 1.8" Storm
					Circa (70)	(801013)
Area A	Bioretention	2.66	1.84	0.20/8,776	10.9	106,227
Alea D	Bioretention	1.09	1.08	0.08/3,651	7.8	43,664
Area C	Bioretention	0.32	0.16	0.02/1,045	15.4	12,708
Area D Filter Strip to Bioslope with underdrain		0.71	0.21	0.07/3,093	34.3	28,349
Area E	Dry enhanced Swale to Bioretention	0.32	0.34	0.02/1,076	7.3	12,708

0.02/1,076	7.3	12,708
0.07/2,944	2.6	31,608
0.06/2,715	5.2	31,608
0.21/9,008	100.0	27,993
0.19/8,146	16.6	100,036
0.01/400	1.9	3,910
0.05/2,262	5.4	26,394
0.01/472	7.0	5,539
0.04/1,880	11.1	22,810
0.03/1,439	2.1	14,663
0.02/685	15.6	8,472
0.13/5,601	34.1	16,944
0.01/527	11.6	6,517
1.23/53.720	9.6	500,150

Designed Green Infrastructure

Post-installation performance monitoring will include:

Runoff reduction

Nutrients

Bacteria

Investigating landscape performance of Historic Fourth Ward Park

University of Georgia Research Team Student Researcher Rachael Shields Research Fellows Jon Calabria Brian Orland Alfie Vick

Historic Fourth Ward Park

HDR Firm Liaisons

David West Robert Bryant

Historic Fourth Ward Park

Typical ponding level, one year storm pond level, and 100-year storm pond level.

Source: HDR.

HDR Firm Liaisons

David West Robert Bryant

PERFORMANCE FINDINGS

ENVIRONMENTAL

- Reduces stormwater peak rate by 9.6% for a 10-year storm.
- Provides flood protection in extreme events, as demonstrated by no flooding at neighboring Ponce City Market since construction.
- Sequesters .51 tons of atmospheric carbon and stores 5.768 tons of atmospheric carbon annually.
- Intercepts an estimated 18,200 gallons of stormwater annually in the canopies of 202 newly planted trees

ECONOMIC

- Contributed to a 56% increase in the median property tax revenue 2009 to 2016.
- Contributed to a 60% increase in the number of occupied housing units
- Helped to attract more than \$2 billion worth of investment in the 6 adjacent blocks to the park, and developers may spend more than an additional billion dollars in the next few years.

SURVEY CONSTRUCTION

quantitative

••• ?	100%
or these questions, pl	ease
dicate whether you a	gree or
lisagree with the state	ment.
This outdoor area provides sense of escape and relief being indoors	from
O Strongly Agree	
O Agree	
O Neutral	
O Disagree	
O Strongly Disagree	
This place discourages inte with others	\sim
This is a good place to han	ng out 🗸

For the please key we	e next four questions provide just two or t ords in each case	100%
What at	tracts you to this place?	
What typ place?	pes of things do you do in th	nis
What do	you like about this place?	
What we	ould make this place more in	nviting

Develop a balanced mix of scaled questions to get numeric responses that can be compared between days, people, locations, and openended questions to get at the richness of how people respond to the landscape--why they answer the way they do and reveal issues we could not predict.

Reference Surveys:

- 1. OLIN Partners Post-Occupancy Evaluation of Washington Canal Park
- Rodiek, Susan, Adeleh Nejati, Eric Bardenhagen, Chanam Lee, and Giulio Senes. 2016. "The seniors' outdoor survey: an observational tool for assessing outdoor environments at long-term care settings." The Gerontologist no. 2: 222. InfoTrac Health Reference Center Academic (accessed July 12, 2018).

SURVEY DISTRIBUTION

There are comfortable places to linger to meet or greet people	0	0	0	0	0
There are at least one or more choices of private outdoor places to sit	0	0	0	0	0
Seating surfaces are comfortably shaped and of materials that do not get too hot or cold	0	0	0	0	0
STEP 5: Please tell us about you	urself				
What is your age? (in years)					
What gender do you identify with?					
Male					
Female					
Other					
I identify my ethnicity as:					
Asian					
Black/African					
Caucasian					
Hispanic/Latino					

SURVEY FINDINGS

QUALITATIVE

- People most commonly visit the site to walk, walk their dog(s), and relax
- Respondents reported they most liked that the site offered water, nature, and quietness
- Respondents reported water, space, and scenery as the biggest attractions of the park

QUANTITATIVE

- 92% of respondents reported they feel safe in this place
- 96% of survey respondents said the park provides a real sense of escape and relief from being indoors
- 65% of respondents spend 30 minutes or more at the park
- 97% of respondents say this area includes abundant healthy green plants

PV + POLLINATORS IN GEORGIA

SOUTHEAST SOLAR CAPACITY FORECAST

EXPONENTIAL GROWTH SINCE 2012

Solar photovoltaic (PV) capacity nearly doubled each year from less than 200 MW in 2012 to almost 3,000 MW in 2016.

GROWTH CONTINUES

From 6,000 MW in 2017, new projects will take solar to 10,000 MW in 2019. Based on utility and other industry forecasts, SACE anticipates 15,000 MW by 2021. Much of this growth represents existing contracts and commitments that remain highly certain.

UTILITY-SCALE SOLAR DOMINATES

Utility-scale solar is favored by an economic advantage, policies, and discretionary utility practices that discourage customer-sited solar ("behind the meter"). Most utility-scale systems are in excess of 5 MW, many exceed 50 MW.

DISTRIBUTED SOLAR PROJECTS LAGS

Despite high customer interest, less growth is predicted for smaller residential rooftop and commercial customer-sited solar accounted via net metering or related billing practices.

LIMITED GRID IMPACTS

Even with 15,000 MW in 2021, the corresponding solar generation is less than 3% of retail sales, considerably below levels that could trigger changes in grid operation practices.

CREDIT: SOUTHERN ALLIANCE FOR CLEAN ENERGY

Largest Solar Plant in Southeast Will Be Built in Georgia

02/22/2018 | Darrell Proctor

PRINT MODE : OFF PAGES: 1 2

A 200-MW solar power plant is being planned at a 2,000-acre site near Warner Robins, Georgia, a project that at present would be the largest standalone solar facility in the U.S. Southeast.

"The literature review revealed a scarcity of information specific to utility-scale solar development in the Southeast. Sources primarily address sites in the desert southwest and in foreign countries, yielding information that is broadly applicable to solar development but lacks useful region-specific data."

Landscape Sustainability for Solar Projects LITERATURE REVIEW

Sustainability and Landscape Performance Lab College of Environment + Design University of Georgia

lason, G., Calabria, J. and Vick, R.

Summer 2016

TYPICAL HUMID SOUTHEAST GROUNDLAYER TREATMENT

TYPICAL ARID WEST GROUNDLAYER TREATMENT

Connexus Energy's pollinator-friendly community solar garden is not only producing renewable energy, it is now producing honey. On April 24, 2017, Connexus Energy had 15 bee hives installed at its SolarWise garden in Ramsey, Minnesota and will be managing and expanding the hives throughout the summer.

	Quantity	UOM	Item Number	Description
	0	Each	LOW GROWING MIX	2-4 FT TALL
	0.05000	lb	AGRHYE01	Winter Bentgrass, Piedmont NC Ecotype
	0.33000	lb	SCHSCO17	Little Bluestern, Piedmont NC Ecotype
	0.30000	lb	PANANC05	Beaked Panicgrass, GA Ecotype
	0.02000	lb	ERAHIR01	Bigtop Lovegrass, VA Ecotype
	0.02000	lb	ASCTUB01	Butterfly Milkweed, PA Ecotype
	0.02000	lb	CHANIC04	Sensitive Pea, NC Ecotype
	0.05000	lb	CORGRA01	Largeflower Tickseed, Piedmont GA Ecotype
	0.10000	lb	CHAFAS01	Partridge Pea, PA Ecotype
	0.01000	lb	ASTSPE03	Showy Aster, NC Ecotype
	0.04000	lb	CORLAN01	Lanceleaf Coreopsis
	0.00500	lb	CORMAJ01	Greater Tickseed, AL Ecotype
	0.00500	lb	CORTRI02	Tall Coreopsis, AL Ecotype
	0.02000	lb	EUPCOE02	Mistflower, FL Ecotype
100	0.01000	lb	LESVIR02	Slender Bushclover, GA Ecotype
	0.01000	lb	LIASQU03	Scaly Blazing Star, VA Ecotype
	0.01000	lb	PENMUL01	Manyflower Beardtongue, FL Ecotype
	0	Each	TOTAL	

4' MIX N

2' MIX

Quantity	UOM	Item Number	Description	Constant of
1	Each	FLOWERING LAWN MIX O	FOR SOLAR FARM IN PIEDMONT, GA	-
0.40000	lb	CHAFAS02	Partridge Pea, FL Ecotype	
0.12500	lb	LIASQU03	Scaly Blazing Star, VA Ecotype	
2.00000	lb	ASCTUB01	Butterfly Milkweed, PA Ecotype	
0.50000	lb	GAIARI01	Perennial Gaillardia (Blanketflower)	
0.25000	lb	CORLAN02	Lanceleaf Coreopsis, SC Ecotype	
0.10000	lb	CORBAS01	Goldenmane Tickseed, FL Ecotype	
0.06250	lb	PYCTEN02	Slender Mountainmint, 'Suther'-NC Ecotype	
0.25000	lb	PENAUS01	Eustis Lake Beardtongue, 'Suther'-NC Ecotype	
0	Each	TOTAL		

State Botanical Garden of Georgia

Piedmont Prairie species research, propagation and dissemination.

State Wildlife Action Plain – Piedmont Prairies Critically imperiled – 8th year of seed increase

CREDIT: Jennifer Ceska, Jim Affoelter, Heather Alley and Jenny Cruse-Sanders

Post-installation performance monitoring will include: Vegetation cover Vegetation diversity Insect diversity Erosion

Runoff

GUY PARKER

HOTO

Sustainability and Landscape Performance (SLaP) Lab

College of Environment and Design

University of Georgia

The Sustainability & Landscape Performance (SLaP) Lab collaborates with practitioners and other partners to monitor the performance of landscapes and green infrastructure practices in order to improve design guidance and management practices and to calibrate predictive models of landscape performance.

Contact:

Jon Calabria: jcalabr@uga.edu

Alfie Vick: ravick@uga.edu