Importance of spatiotemporal variation in Spartina alterniflora belowground biomass

Jessica O'Connell¹, Merryl Alber¹, Deepak Mishra¹, Kristin Byrd² ¹University of Georgia; ²U. S. Geological Survey

Topics I work on now

- Transitions in species composition
- Phenology of tidal marshes
- Gross Primary Production
- Mapping belowground biomass

Sapelo Island PhenoCam

PhenoCam field of view

Collecting data since 2013-09-17

Spatial and temporal phenology

Flux towers at 4 locations

Belowground productivity: importance within coastal marsh

- Contributes to soil organic matter to build "blue carbon"
- Contributes to marsh stability as sea level rises

Marsh productivity can keep pace with SLR

Miller et al. 2008. San Francisco Estuary and Watershed Scien

California's Sacramento-San Joaquin Delta

 Subsidence reversed in restored wetlands through biomass gains:
Plant production 1-3 kg C m² yr⁻¹ Accretion of 3-9 cm yr⁻¹

Marsh resiliency is a plant process

- Forecasting resiliency depends on knowing patterns and drivers of phenology and productivity
- Forecasting resiliency also depends on scaling up from local processes to landscape trends

Pressures on marsh productivity in Georgia

From tidesandcurrents.noaa.gov

Pressures on marsh productivity in Georgia

Biomass data from GCE-LTER

Belowground measures difficult

- Direct measures time consuming
- Indirect measures must account for light, phylogeny, competition, leaf area, temp, nutrients
- Root:shoot ratios are variable
- Assuming belowground from aboveground is misleading

Remote sensing may help scale belowground measurements

- Remote sensing detects surface temperature, foliar N, chlorophyll (mostly N), leaf area index (LAI) and aboveground biomass
- Species specific field data needed for calibration

Objective:

 Map Spartina alterniflora belowground biomass through aboveground proxies within salt marsh using remote sensing methods

 Permanent vegetation plots measured monthly for stem height and stem density 2013-2016

Field approaches

• Collected remote sensing data: spectral reflectance, LAI, leaf N and Chlorophyll

Collected root cores adjacent to plots

Hybrid Belowground biomass model

Prediction accuracy: belowground biomass

Longitude

81.29°W 81.289°W 81.29°W 81.275°W Longitude

Jun 2016 Jun 2016 - 1800 aboveground biomass (g m⁻² - 1600 - 1400 - 1100 - 1000 belowground biomass (g m⁻²)

81.29°W 81.285°W 81.28°W 81.275°W Longitude

81.29% 81.285% 81.29% 81.275% Longitude

81.29°W 81.285°W 81.29°W 81.275°W Longitude

Longitude

3480000

3479500

Conclusions

- Spectral reflectance estimates of belowground biomass possible for many marsh plants
- Future work will extend and automate these models
- Future work also will examine drivers, broad spatial patterns and long-term trends

Acknowledgements

- Supported by the Georgia Sea Grant and the Georgia Coastal Ecosystems Long-Term Ecological Research project
- We thank Adam Sapp, Steve Pennings, Caroline Reddy, Tim Montgomery, Shuvo Ghosh, Jieun Rim, and Elizabeth Benyshek for their assistance or support

Previous work

From: O'Connell, Byrd, Kelly. 2015. Remote Sensing

Tidal wetland ecosystem services

Tidal wetland ecosystem services

"Blue Carbon" (Mcleod et al. 2011)

- ↓ salinity
- ΙЦС

Elevation drives gradients in productivity

Elevation drives gradients in productivity

Productivity also drives elevation

Previous work: California's Sacramento-San Joaquin Delta

- Estimated belowground biomass and root:shoot ratio in tidal freshwater marsh (Schenoplectus acutus, Typha)
- Used hybrid modeling to join spectral estimates of foliar N & aboveground biomass to estimate belowground

Plot scale phenology

ag obs

bg fit

ag fit B

- -

bg obs

Predictors: elevation and start of growing season

• Winter soil temperature is a proxy for spring green-up and varies with elevation

Predictors: elevation and start of growing season

• Winter soil temperature is a proxy for spring green-up and varies with elevation

Predictors: elevation and start of growing season

- Elevation from corrected DEM
- Landsat 8 can estimate winter surface temperature variation (band 10)

Marshes highly productive

McLeod et al. 2011. Frontiers in Ecol. & the Envir.

Predictors: vegetation parameters

Prediction accuracy: aboveground inputs

Past and current study sites

Bird conservation Wetland restoration Plants in Isolated wetlands Cropland, rangeland, CRP Dispersal limitation Tidal wetland productivity

Past research

Current work

Scaling up belowground biomass

- First estimate aboveground predictors from satellite data
- Create hybrid model that combines aboveground predictors into a belowground biomass estimate

