High-Resolution Mapping of Vegetation, Elevation, Salinity and Bathymetry to Advance Coastal Habitat Management in Georgia

Christine Hladik
Georgia Southern University

Clark Alexander
Skidaway Institute of Oceanography
Tidal marshes

- Structured by salinity
 - Salt: > 18 PSU
 - Brackish: 0.5 – 18 PSU
 - Tidal Fresh: < 0.5 PSU

- Variation in ecosystem services
 - Brackish and tidal fresh
 - > Biomass
 - > C, N, P storage
 - > Accretion
 - > Denitrification

- Implications for SLR and salt water intrusion

Adapted from Odum et al. 1984
Tidal marshes

- Elevation influences flooding regime and abiotic variables
- Determines vegetation type
 - Longitudinally along the salinity gradient
 - Vertical zonation of vegetation
- Need high accuracy data to predict:
 - Vegetation
 - Storm surge
 - SLR
 - Erosion

http://oceanservice.noaa.gov
Light Detection and Ranging (LIDAR) in Tidal Marshes

Salt Marshes

• Mean vertical errors of:
 – 0.07 to 0.17 m in Southeastern marshes
 – 0.03 to 0.25 m in Georgia

• Species-specific and increases with height

Brackish/Tidal Fresh

• Mean vertical errors of:
 – 0.11 to 0.98 in San Francisco Bay, CA
 – 0.33 to 0.76 m St. Johns River, FL wetlands

• Species-specific and increases with height
Predicting Marsh Distributions

• Sea Levels Affecting Marshes Model (SLAMM Version 6.2)
 – Habitat shifts due to SLR and salinity based on elevation
 – Improvements: accretion, salinity, FW flows
 – Coastal management and resiliency

• To model future marsh distributions need accurate:
 – DEMs
 – Habitat maps
 – Salinity
 – Bathymetry
Project Objectives

Overall goal: Provide datasets needed to effectively model future wetland distributions

1. Evaluate accuracy of LIDAR-derived DEMs
2. Delineate salt and brackish marsh habitat
3. Derive and apply habitat-specific correction factors to produce corrected DEMs
4. Document the extent of high-water salinity intrusion
5. Update detailed bathymetry of the five major Georgia rivers
Methods: LIDAR Data

FEMA DEM-Bathymetry

- Data sources
 - Coastal GA Elevation Project (2010)
 - Chatham (2009)
 - Liberty (2006)
 - Glynn (2001)
- 1 m point spacing
- 4 m DEM
- NAVD 88 vertical datum
Methods: DEM Accuracy Assessment

- 596 RTK sampling locations
 - *J. roemerianus/Schoenoplectus sp* (JR)
 - Marsh meadow (MM)
 - *S. cynosuroides/S. tabernaemontani* (SC)
 - Medium *S. alterniflora* (SM)
 - Short *S. alterniflora* (SS)
 - Tall *S. alterniflora* (ST)
- Training (297) and validation (299)
- Mean error (correction factor)
 - Predicted (DEM) – Observed (RTK)
Results: Training Data RTK vs. DEM

Mean Error = 0.12 m
Habitat Delineation

- Orthoimagery (0.15 m)
 - Coastal Imagery Project and Camden
 - 3 or 4 bands (B, G, R, NIR)

- Classification
 - Eight classes
 - Training/validation data digitized from field maps
 - Random forest classifier
 - Orthoimagery
 - DEM
 - NWI
 - Overall accuracy of 90%
 - Class accuracies of 55-99%
 - JR: 97%
 - SM: 88%
 - DEM and NIR most important
DEM Correction: Habitat-specific corrections

Uncorrected DEM Classification + Correction Factors Corrected DEM
DEM Mean Errors

- **Unmodified DEM**
 - Over-predicted
 - Brackish had the largest errors (0.25 m)
 - Taller vegetation significantly different from RTK

- **Modified DEM**
 - Slightly under-predicted
 - Not significantly different from RTK

![Graph showing mean elevation errors for unmodified and modified DEMs.](image)
Salinity Cruises

Salinity Cruises 2014
Low Discharge Conditions

Salinity Cruises 2015
High Discharge Conditions
Summary

• Accuracy assessments are necessary in densely vegetated habitats
 – DEM overestimated tidal marsh elevations and need correction
 – DEM interpolation and surface conditions

• Classification of tidal marsh
 – Eight class habitat delineation
 – Ancillary elevation and NIR band

• Bathymetry and salinity
 – New and improved bathymetry
 – Baselines for salt water intrusion in rivers and salt marsh estuaries
Implications and Future Work: SLAMM

- Improved Data
- Ready for SLAMM
- Management:
 - Marsh migration
 - Land use planning
 - Restoration priorities
Acknowledgments

• Funding
 – Georgia Coastal Management Program

• Field Support
 – Mike Robinson
 – Ellen Herbert (University of Indiana)
 – Students (Katie Wakefield, Zane Cress, Maggie Aurelio, Ben Freeman)
 – Skidaway Institute of Oceanography
 – University of Georgia Marine Institute

• Georgia Southern Geology and Geography