Top-down and Bottom Forces Interact to Cause Massive Marsh Die Back

Contact Name(s): Brian Silliman and Mark Bertness

Contact Affiliation/Info: Box G-W, Brown University, Providence, RI 02912

Participating Investigators/Affiliation: Same as above

Study Initiated: 2003-04
Anticipated Completion Date: 2006

Funding Source: GA Sea Grant and NSF

Study Site Location(s): Sapelo Island GA and Louisiana

Keywords: Fauna, Microbes, *Spartina*

Project Type: Experimental

Project Outline:

Specific Aims: To experimentally examine how consumers and bottom-up factors interact to cause marsh die back.

Methodology: Consumer exclusions and tethering experiments, Small and large scale surveys, Long-term data analysis.

Results to Date:

For nearly 5 decades, the prevailing theory of salt marsh ecology has been that bottom-up forces are the primary factors regulating plant production. However, experimental manipulation of the dominant marsh grazer (periwinkle – *Littoraria irrorata*) and its predators showed that top-down forces are also strong determinants of marsh plant growth. Periwinkle grazing can convert one of the most productive grasslands in the world into a barren mudflat in 8 months. Marine predators regulate abundance of this plant-grazing snail. Thus, top-down control of grazer density is a key regulatory determinant of marsh grass growth. The discovery of this trophic cascade implies that over-harvesting of snail predators (e.g. blue crabs) may be an important factor contributing to massive die-off of marshes across southeastern U. S. We have surveyed and installed exclusion cages at 4 die off areas in GA and LA (with L. Stanton and I. Mendelssohn) and found 100 m long snail fronts with >2,500 ind./m² grazing down marsh grass at up to 14 m/year. Large-scale, multi-site snail tethering experiments and monitoring of predator abundances over three years in GA marshes showed that top-down control of *Littoraria* decreases significantly with local blue crab declines. These results show that (1) successful management of crab fisheries may be critical for long-term persistence of salt marshes and (2) the bottom-up paradigm of marsh ecology and its application to other systems needs to re-evaluated.
Lessons Learned:

1) Experiments are key to unraveling causal factors of marsh die back.
2) Top-down forces as well as bottom-factors drive marsh die off and the relative importance of these factors varies from site to site.

Publications, reports, or web-accessible materials

