Acute Salt Marsh Dieback in the Mississippi River Deltaic Plain: Survey of Multiple Sites in Barataria and Terrebonne Basins

Contact Name(s): Karen L. McKee
Contact Affiliation/Info: National Wetlands Research Center, USGS
Participating Investigators/Affiliation: Irving A. Mendelssohn/ Wetland Biogeochemistry Institute/Louisiana State University, Michael D. Materne/Agronomy Dept./Louisiana State University

Study Initiated: August 2000 Completion Date: September 2001
Funding Source: Louisiana Sea Grant, NOAA/Louisiana DNR/Louisiana Governor’s Office of Coastal Activities

Study Site Location(s): Barataria and Terrebonne Basins, Mississippi River Deltaic Plain, Louisiana, USA

Keywords: Avicennia, Climate, Juncus, Plant tissue analysis, Salinity, Spartina, Soil chemistry, Toxins, Water chemistry

Project Type: Experimental

Project Outline:
Specific Aims: assess condition of acute dieback areas in MRDP, potential causes, plant recovery, implications for restoration efforts and global change models

Methodology: aerial and ground surveys of plants and soils, historical records, known tolerance limits of salt marsh vegetation to environmental stress factors

Results to Date:
Dieback areas ranged in size from ~300 m² to 5 km² in area with 50 to 100% mortality of plant shoots and rhizomes in affected zones. Co-occurring species such as Avicennia germinans (black mangrove) and Juncus roemerianus (black needlerush) were unaffected. Historical records indicated that precipitation, river discharge, and mean sea level were unusually low during the previous year. Although the cause of dieback is currently unknown, plant and soil characteristics were consistent with temporary soil desiccation that may have reduced water availability, increased soil salinity, and/or caused soil acidification (via pyrite oxidation) and increased uptake of toxic metals such as Fe or Al. Plant recovery fifteen months after dieback was variable (0 to 58 % live cover), but recovering plants were vigorous and indicated no long-lasting effects of the dieback agent.

Lessons Learned:
These findings have relevance for global change models of coastal ecosystems that predict vegetation responses based primarily on long-term increases in sea level and submergence of marshes. Our results suggest that large-scale changes in coastal vegetation may occur over a relatively short
time span through climatic extremes acting in concert with sea-level fluctuations and pre-existing soil conditions.

Publications, reports, or web-accessible materials


