Investigation of Potential Causes of Salt Marsh Dieback in Georgia: a Transplant Study

Contact Name(s): Matt Ogburn, Merryl Alber

Contact Affiliation/Info: M. Ogburn (Dept of Marine Sciences, University of Georgia, ogburn@uga.edu); M. Alber (Dept of Marine Sciences, University of Georgia, malber@uga.edu).

Participating Investigators/Affiliation: University of Georgia: Matt Ogburn, Merryl Alber

Study Initiated: May 2003 Anticipated Completion Date: November 2003

Study Site Location(s): Georgia -- Liberty County (Melon Bluff Plantation), McIntosh County (Sapelo Island).

Keywords: Juncus, Nutrients, Salinity, Spartina, Soil chemistry, Transplants

Project Type: Descriptive, Experimental

Project Outline

Specific Aims

- To determine if Spartina alterniflora and Juncus roemarianus survive when transplanted into dieback areas or recover when transplanted from live/dead transition zone to healthy areas.
- To determine if any measured parameters correlate to vegetative dieback.

Methodology

- Four sets of transplants in different types and locations of dieback (Melon Bluff – creekbank S. alterniflora, high marsh S. alterniflora, high marsh J. roemarianus; Sapelo Island – creekbank S. alterniflora).
- Site prep:
 - 12 replicate transplants (20 inch pots) per treatment
 - Treatments
 - Healthy plants to dead area
 - Healthy plants to healthy area (control)
 - Live plants from dead border to healthy area (Sapelo creek bank S. alterniflora and Melon Bluff high marsh S. alterniflora only)
 - Live plants from dead border to dead area (control) (Sapelo creek bank S. alterniflora and Melon Bluff high marsh S. alterniflora only)
- Monitored Parameters
 - Vegetation
 - Stem count (by species)
 - Stem height
 - CNS ratio
 - Physical
 - Porewater pH, salinity, NH₄ and Eh
 - Surface elevation
Results to Date

- All plants grew and survived
- Healthy plants survive in dieback areas and grow just as well as in reference sites
- There was no difference in porewater pH, salinity, or redox potential between dieback and reference sites
- High concentrations of porewater NH$_4^+$ were found in the dieback sites, likely due to decomposition of root and rhizome material.

Lessons Learned

Publications, reports, or web-accessible materials